Comparison of FSU’s High Resolution Historical Precipitation Database with Thiessen Polygon Gauge Amounts

Dennis D. VanCleve, Jr.

Henry E. Fuelberg and John L. Sullivan, Jr.

Department of Meteorology
Florida State University
Overview

- Describe FSU’s historical precipitation database
- Briefly introduce Multisensor Precipitation Estimator (MPE)
- Discuss the use of Thiessen polygons
- Compare MPE amounts with Thiessen polygon estimates within Black Creek Basin for 1996-2003
- Examine two case studies
- Conclusions
Multisensor Precipitation Estimator

- Optimally combines gauge and radar-derived precip.
- Software developed by the National Weather Service (NWS) Hydrologic Research Laboratory
- Utilizes the strengths of each sensor
 - Gauges - Accurate point measurements
 - Radar - High resolution horizontal fields
- Final Product
 - 4 x 4 km² grid
 - Hourly totals
- Used at NWS offices and River Forecast Centers
Methodology

- **MPE algorithm**
 - Analyzes quality controlled gauge data onto HRAP grid
 - Picks radar that best “sees” each grid point
 - Calculates hourly gauge/radar bias for each radar
 - Multiply radar values by bias
 - Finally, combines gauge data with bias-corrected radar

- **Thiessen polygons**
 - Define area of gauge influence halfway to each nearest gauges
Black Creek Basin

Just southwest of JAX

Thiessen polygon

MPE 4x4 km² cell

Gauge

St. Johns River
Hourly MPE vs Gauge

Correlation = 0.850
Stdev(Diff) = 0.028
Mean(Diff) = 0.001
Mean[Abs(Diff)] = 0.003
n = 56679

MPE (in)

Gauge (in)
Hourly MPE vs Gauge

![Chart](image)

- **X-axis**: Gauge (in)
- **Y-axis**: MPE (in)

The graph shows a scatter plot with a trend line indicating a positive correlation between MPE and Gauge.
Hourly Cold Season MPE vs Gauge

- Correlation = 0.938
- Stdev(Diff) = 0.011
- Mean(Diff) = 0.000
- Mean[Abs(Diff)] = 0.001
- n = 27417
Hourly Warm Season MPE vs Gauge

Correlation = 0.831
Stdev(Diff) = 0.038
Mean(Diff) = 0.001
Mean[Abs(Diff)] = 0.005
n = 29262
Daily MPE vs Gauge

Correlation = 0.929
Stdev(Diff) = 0.129
Mean(Diff) = 0.012
Mean[Abs(Diff)] = 0.037
n = 1450
Daily Cold Season MPE vs Gauge

Correlation = 0.974
Stddev(Diff) = 0.055
Mean(Diff) = 0.003
Mean[Abs(Diff)] = 0.014
n = 741
Daily Warm Season MPE vs Gauge

Correlation = 0.917
Stdev(Diff) = 0.176
Mean(Diff) = 0.021
\[
\text{Mean[Abs(Diff)]} = 0.061
\]
\[
n = 710
\]
Gauge = 2.05 in
MPE average = 0.79 in
MPE cell over gauge = 1.95 in

Gauge = 0.36 in
MPE average = 0.32 in
MPE cell over gauge = 0.42 in
Rainfall (in)

22Z July 19, 2002

Gauge = 1.01 in
MPE average = 0.80 in
MPE cell over gauge = 1.09 in

23Z July 19, 2002

Gauge = 0.17 in
MPE average = 0.76 in
MPE cell over gauge = 0.28 in
Conclusions

- **Statistical comparisons:**
 - Given different scales of data, MPE and gauges agree well.
 - Correlations, biases, and standard deviations all increase from hourly to daily data.
 - Better agreements during cold season…stratiform precip.
 - Less agreement during warm season…convective precip.
 - MPE provides superior spatial resolution.

- **Case studies:**
 - Heavy rainfall can occur over gauge or miss gauge, causing Thiessen polygon estimates to be too large or too small.
 - These situations often occur in convective scenarios (typically warm season).
Future Work

- Multiple basins to be studied
- Quantify differences that arise due to:
 - Storm type – convective or stratiform
 - Season – Cold vs. warm
 - Size of the basin
 - Gauge density within the basin
 - Time period of the calculations – hourly, daily, monthly, etc.
 - Area of Florida in which the basins are located
- Compare data sources using a hydrologic model

Research sponsored by
Florida Dept. of Environmental Protection
Data are available

- 4 x 4 km² hourly data
- 1996-2004
- Florida, Georgia, and Alabama
- Contact:
 Denny VanCleve
dvanclev@met.fsu.edu