An Examination of Summertime Cyclones in the Context of the Classical Warm Conveyor Belt Definition Established During the Cool Season

Chris Kiley and Henry Fuelberg
Florida State University, Tallahassee, Florida

1. Introduction

- Warm Conveyor Belt
 - A narrow stream of air that transports large amounts of heat, moisture, and westerly momentum (Glossary of Meteorology)
 - Air which originated far south of the low in the warm sector, moved north, and joined the upper-level westerly flow northeast of the low center (Carlson, 1980)

Study Objectives:
- WCBs and deep convection have been shown to be the primary mechanisms for transporting pollution during the cool season
- Characteristics of lifting and transport mechanisms observed during INTEX-A are documented and compared to the classical cases

2. Data

- MM5 Domain:
 - Positionned over United States and western Atlantic
 - 6 km horizontal separation
 - 40 vertical sigma levels

- Initialization Data:
 - Initial and lateral boundary conditions obtained from 3-D global reanalyses prepared by NCEP and available from NCAR
 - 6-hour intervals
 - Horizontal resolution
 - FDDA employed to nudge the model toward synoptic analyses

- MM5 Parameterization:
 - Kain-Fritsch cumulus parameterization scheme
 - MRF PBL
 - Simple Ice (Dudhia) microphysical scheme

- Model Output:
 - Hourly wind data from MM5 used to calculate forward air trajectories out 2 days
 - In addition to MM5 output parameters, convective upward mass flux from Kain-Fritsch archived

- 700 hPa grid scale vertical motion utilized in forward trajectory calculations

- 19 Jul 2004
- Broad region of low pressure along east coast at 12 UTC

3. Classical WCB Case (05 Dec 1977)

- Synoptic Pattern:
 - 25 Dec 1977
 - Minimum central pressure 982 hPa at 12 UTC
- Forward Trajectories and Mass Flux:
 - At infl. 700 hPa grid scale vertical motion utilized in forward trajectory calculations
- Warm conveyor belt (WCB), cold conveyor belt (CCB), and dry intrusion (DI)

- 2 day forward trajectories starting at 900 hPa, indicating location of possible WCB
- Largest ascent near cyclone center

- Synoptic Pattern:
 - 17 July 1556 UTC
 - Sub-grid scale convective UMF found at INTEX-A trajectory locations, but not at Carlson’s trajectory locations
 - 2 day forward trajectories indicate air lofted from the boundary layer to the free troposphere in all cases

- Forward Trajectories and Mass Flux:
 - 700 hPa grid scale convective upward mass flux (not included in trajectory vertical motion) interpolated to 4-D trajectory locations
 - Note lower magnitude than Carlson’s case

- Sub-grid scale normalized upward convective mass flux
- Maximum value over output frequency shown

- 2 day forward trajectories starting at 900 hPa, indicating location of possible WCB
- Largest ascent away from cyclone center

5. Additional WCB Cases:

6. Discussion

- Study Objectives:
 - Define WCB
 - Maximum central pressure 992 hPa at 12 UTC

- Characteristic of lifting and transport mechanisms observed during INTEX-A are documented and compared to the classical cases

- Sub-grid scale convective UMF found at INTEX-A trajectory locations, but not at Carlson’s trajectory locations
- 2 day forward trajectories indicate air lofted from the boundary layer to the free troposphere in all cases

- Classical WCB ascent is gradual and does not rise rapidly until reaching the warm front (near the cyclone)

7. Results

- Summertime transport resembles the WCB, however, lofting often takes place very quickly (away from the cyclone) due to convection
- Convection dominates lofting in the summertime

- Classical WCB ascent is gradual and does not rise rapidly until reaching the warm front (near the cyclone)

- Sub-grid scale convective UMF found at INTEX-A trajectory locations, but not at Carlson’s trajectory locations
- 2 day forward trajectories indicate air lofted from the boundary layer to the free troposphere in all cases

- Cooling, humidity, and temperature advection terms (not shown) all support downward vertical transport in Carlson’s case
- These patterns are much weaker in warm season than Carlson’s
- Sub-grid scale convective UMF found at INTEX-A trajectory locations, but not at Carlson’s trajectory locations
- 2 day forward trajectories indicate air lofted from the boundary layer to the free troposphere in all cases

- Convective upward mass flux from Kain-Fritsch archived
- Note lower magnitude than Carlson’s case

- Sub-grid scale normalized upward convective mass flux
- Maximum value over output frequency shown

- 2 day forward trajectories starting at 900 hPa, indicating location of possible WCB
- Largest ascent away from cyclone center

- Classical WCB ascent is gradual and does not rise rapidly until reaching the warm front (near the cyclone)

- Cooling, humidity, and temperature advection terms (not shown) all support downward vertical transport in Carlson’s case
- These patterns are much weaker in warm season than Carlson’s
- Sub-grid scale convective UMF found at INTEX-A trajectory locations, but not at Carlson’s trajectory locations
- 2 day forward trajectories indicate air lofted from the boundary layer to the free troposphere in all cases

- Convective upward mass flux from Kain-Fritsch archived
- Note lower magnitude than Carlson’s case

- Sub-grid scale normalized upward convective mass flux
- Maximum value over output frequency shown

- 2 day forward trajectories starting at 900 hPa, indicating location of possible WCB
- Largest ascent away from cyclone center