Assessing Convective Influence by Utilizing Cloud to Ground Lightning Data and High Resolution Kinematic Trajectories

M. Porter1, H. Fuelberg1, K. Pickering2, J. Crawford3, W. Brune4, R. Cohen5, B. Heikes6, G. Sachse3, H. Singh7, P. Wennberg8

1 The Florida State University 2 University of Maryland, College Park 3 NASA Langley 4 Penn State University 5 UC Berkeley 6 University of Rhode Island 7 NASA Ames 8 California Institute of Technology

Goals

- Quantity the convective influence of parcels sampled during INTEX-A by using National Lightning Detection Network cloud to ground flash counts as a convective indicator.
- Perform “lightning tracing” along backward air trajectories created by a mesoscale meteorological model, expanding upon the work of Jeker et al., JGR, 2000.
- Construct a post-convective vertical profile of lightning NOx from INTEX-A observations.

Methodology

- This initial analysis was performed on Flight 7 (lower left), once it was influenced by widespread deep convection on several previous days.
- Back trajectories from the flight were made using output from the Rapid Update Cycle (RUC) model which has spatial and temporal resolutions of 20 km and 3 hours, respectively.
- For each hour back along a trajectory, a flash is said to have influenced the trajectory if it fell within a spatial threshold of the trajectory up to an hour before or half an hour after trajectory arrival.
- The spatial threshold was increased 2 km every hour back from the flight to account for increasing trajectory uncertainty with time.

Convective Age

- Convectively fresh parcels, ones that have recently encountered convection, have a higher ratio of reactive NOx to HNO\textsubscript{3}, HNO\textsubscript{2}, and PAN than do older encounters.
- The change in the ratio of NOx to HNO\textsubscript{3} is more noticeable between fresh and stale parcels than in the change in the NOx to HNO\textsubscript{3} ratio.
- HNO\textsubscript{3} is a more significant component of a stale parcel's NOx than a fresh parcel's NOx.
- Some grouping of points is noticeable, but there is indication of multiple convective origins along the 4 flight legs.

Case Study:

12 July 2004

- Diurnal heating generated afternoon thunderstorms across the Midwest and Southeast for several days prior to the flight.
- A large high pressure system covered the Southeast, producing stagnation and clockwise windward circulation.
- Strong cold front with associated thunderstorms moved through the northern Great Plains.

Summary

- By using high resolution trajectories to perform lightning tracing, a procedure has been created to analyze the convective influences on INTEX-A observations.
- Tested on the chemical data from Flight 7, this method provided results which seem reasonable statistically and theoretically.
- The calculated age since convection agrees with expected trends in the temporal evolution of NOx products.
- It is important to note that assessing a parcel's cumulative lightning influence is more advantageous in potential lightning NOx calculations.
- When this model is applied to the full INTEX-A dataset, it will optimally allow the development of a post-convective vertical lightning NOx profile.
- Potential omissions of this research include addressing NO per flash production estimates, comparing the usefulness of lightning with other convection indicators, and quantifying trajectory uncertainties with chemical observations (NOx).